Semiconductor Fuses

Notes on Dimensioning

Varying load with known load cycle

Direct current:

$$\begin{array}{l} I_{\rm d1} = \ 1200 \ {\rm A} & t_1 = \ 20 \ {\rm s} \\ I_{\rm d2} = \ 500 \ {\rm A} & t_2 = \ 240 \ {\rm s} \\ I_{\rm d3} = \ 1000 \ {\rm A} & t_3 = \ 10 \ {\rm s} \\ I_{\rm d4} = \ 0 \ {\rm A} & t_4 = \ 60 \ {\rm s} \\ \end{array}$$

Fuse current:

$$I_{La1} = 1200 \times 0.58 = 696 \text{ A}$$

 $I_{La2} = 500 \times 0.58 = 290 \text{ A}$
 $I_{La3} = 1000 \times 0.58 = 580 \text{ A}$

R.m.s. value of load current

$$I_{\text{eff}} = \sqrt{\frac{696^2 \times 20 + 290^2 \times 240 + 580^2 \times 10}{330}} = 317 \text{A}$$

Selected: 3NE3 333 SITOR fuse link (450 A/1000 V), WL = 1breaking I^2t value $I^2t_{\rm A} = 175 \times 10^3 \times 0.53 = 93 \times 10^3 \text{ A}^2\text{s}$ test cross-section to page 2/78: 320 mm²

The following correction factors are to be applied:

$$k_{\rm u} = 1.02 \ (\vartheta_{\rm u} = +35 \ ^{\circ}{\rm C})$$

 $k_{\rm q}$ = 0.94 (conductor cross-section, double-ended, 50 % of test cross-section)

 $k_{\lambda} = 1.0$ (conduction angle $\lambda = 120^{\circ}$)

 $k_{\rm I} = 1.0$ (no forced-air cooling)

1. Required rated current I_n of the SITOR fuse link:

$$I_{\rm n} \ge I_{\rm eff} \times \frac{1}{k_{\rm u} \times k_{\rm q} \times k_{\lambda} \times k_{\rm l} \times WL} =$$

$$317 \text{ A} \times \frac{1}{1,02 \times 0,94 \times 1,0 \times 1,0 \times 1,0} = 331 \text{ A}$$

Permissible load current I_n of the selected fuse link:

$$I_{\rm n}'=k_{\rm u}\times k_{\rm q}\times k_{\lambda}\times k_{\rm l}\times WL\times I_{\rm n}=1.02\times0.94\times1.0\times1.0\times1.0\times450=431~{\rm A}$$

2. Checking the permissible overload duration of current blocks exceeding the permissible fuse load current I_n '.

Previous load ratio:

$$V = \frac{I_{\text{eff}}}{I_{\text{r}}} = \frac{317}{431} = 0.74$$

Residual value factor RW: for V = 0.74 of curve a (characteristic curve page 2/82, frequent surge/load cycle currents) RW = 0.2

Current block $I_{\rm La1}$: melting time $t_{\rm vs}$: 230 s (from time/current characteristic curve for 3NE3 333) $t_{\rm vs}$ x RW = 230 s x 0.2 = 46 s > $t_{\rm 1}$

Current block $I_{\rm La3}$: melting time $t_{\rm vs}$: 1200 s from time/current characteristic curve for 3NE3 333) $t_{\rm vs}$ × RW = 1200 s × 0.2 = 240 s > $t_{\rm 3}$

Occasional surge load from preloading with unknown surge outcome

Direct current:

$$I_{\text{dprev}} = 700 \text{ A}$$

$$I_{\text{dsurge}} = 500 \,\text{A}$$
 $t_{\text{surge}} = 8 \,\text{s}$

Fuse current:

$$I_{\text{prev}} = I_{\text{dprev}} \times 0.58 = 406 \,\text{A}$$

$$I_{\text{prev}} = I_{\text{dprev}} \times 0.58 = 406 \text{ A}$$

 $I_{\text{surge}} = I_{\text{dsurge}} \times 0.58 = 1015 \text{ A}$

Conditions:

 $t_{\text{interval}} \ge 3 t_{\text{surge}}$ and $t_{\text{interval}} \ge 5 \text{ min must be fulfilled}$.

Selected:

3NE3 333 SITOR fuse link

(560 A/1000 V), WL = 1breaking I^2t value $I^2t_A = 360 \times 10^3 \times 0.53 = 191 \times 10^3 \text{ A}^2\text{s}$

test cross-section to page 2/78: 400 mm

The following correction factors are to be applied:

$$k_{U} = 1.02 (\vartheta_{U} = +35 \, ^{\circ}\text{C})$$

 $k_{\rm q}$ = 0.91 (conductor cross-section, double-ended, 40 % of test cross-section)

 $k_{\lambda} = 1.0$ (conduction angle $\lambda = 120^{\circ}$)

 $k_{\rm l} = 1.0$ (no forced-air cooling)

1. Required rated current I_n of the SITOR fuse link:

$$I_{\rm n} \ge I_{\rm prev} \times \frac{1}{k_{\rm u} \times k_{\rm q} \times k_{\lambda} \times k_{\rm l} \times WL} =$$

$$406 \text{ A} \times \frac{1}{1,02 \times 0,91 \times 1,0 \times 1,0 \times 1,0} = 437 \text{ A}$$

Permissible load current I_n of the selected fuse link:

$$I_{\text{n}}' = k_{\text{u}} \times k_{\text{q}} \times k_{\lambda} \times k_{\text{l}} \times WL \times I_{\text{n}} = 1.02 \times 0.91 \times 1.0 \times 1.0 \times 1.0 \times 560 = 520 \text{ A}$$

2. Checking the permissible overload duration of the surge current

Previous load ratio:

$$V = \frac{I_{\text{prev}}}{L'} = \frac{406}{520} = 0.78$$

Residual value factor RW: for V = 0.78 of curve a (characteristic curve page 2/82, frequent surge/load cycle currents) RW = 0.18

Surge current $I_{\rm surge}$: melting time $t_{\rm VS}$: 110 s (from time/current characteristic curve for 3NE3 333) $t_{\rm VS}$ x RW = 110 s x 0.18 = 19.8 s > t_{surge}

Correction factors can be found on page 2/78 and page 2/79.